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DETERMINATION OF THREE BODY 
CORRELATIONS IN SIMPLE LIQUIDS BY RMC 

MODELLING OF DIFFRACTION DATA. 11. 
ELEMENTAL LIQUIDS 
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L. PUSZTAI and I. BORZSAK 
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Budapest 112, Pf: 32, H-1518 Hungary 

(Received 3 July 1992) 

The structures of 51 elemental liquids have been modelled from experimental diffraction data using the 
reverse Monte Carlo method. The structural trends across the periodic table are described in terms of 
three-body correlations and discussed in terms of the relative importance of two-body and many-body 
forces. 

KEY WORDS: Reverse Monte Carlo method, many-body forces. 

1 INTRODUCTION 

In the first part of this review' we describe the Reverse Monte Carlo' (RMC) method 
of obtaining model structures of disordered systems based on the structure factors 
obtained by experiment. We then went on to present the results of some tests of the 
method in which we used the structure factors obtained from Monte Carlo (MC) 
simulations and determined to what extent an RMC calculation would reproduce 
the three-body correlations of the simulation. We concluded that RMC does indeed 
work successfully if the potentials are pairwise additive. In cases where they are not 
then the imposition of constraints, e.g. modelling molecular systems with molecules 
rather than atoms, can enable the three dimensional structure to be determined. We 
also concluded that when the potentials are very complex, which usually makes the 
problem difficult for MC or molecular dynamics (MD) simulations, RMC with 
constraints is still a valuable way of distinguishing between various structural 
possibilities. 

* Current address: Institute of Hydrology, Crowmarsh Gifford, Wallingford, Oxon OX10 SBB, UK. 
t Current address: Studsvik Neutron Research Laboratory, S-611 82 Nykoping, Sweden. 
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206 M. A. HOWE et (11. 

In this second part we present the results of RMC calculations for a large number 
of elemental liquids (See Table 1 and Figure 1). Many of these liquids can be well 
described by pairwise additive potentials so we expect the application of RMC to be 
straightforward and to accurately reproduce the three body correlations. In other 
cases, however, there is more of a molecular nature to the liquid which means that 
three-body interactions are not negligible and simple RMC does not necessarily 
produce the right structure. Here the use of coordination constraints has allowed us 
to explore the variety of structures that are consistent with the experimentally 
determined structure factors. 

2 THEMETHOD 

Details of the RMC method have been given before’,’ so we shall just give a brief 
summary. The aim is to produce three dimensional structural models of a system 
that are consistent with the available diffraction data, within the errors of that data. 
To do this we use a modification of the standard Metropolis Monte Carlo (MMC) 
method3 where, instead of minimising the system energy, we minimise the difference 
between the calculated and experimental spectra. The algorithm is as follows. 

1) Start with an initial configuration, i.e. a set of coordinates in a box representing 
atomic positions, with periodic boundary conditions. Calculate the radial distribution 
function 

where p is the atomic number density and nrmc(r) is the number of atoms at a distance 
between r and r + Ar from a central atom, averaged over all atoms as centres. 
Transform to the structure factor 

and calculate 

where Sexp,(Qi) is the experimentally measured structure factor and a(Qi) is a measure 
of the experimental error. 

2) Move one atom at random. Calculate the new grmc(r), Srmc(Q) and thus the new 
x 2 ,  let us call it x ’ ~ .  

3) If x” < x 2  the move is accepted. If x ‘ ~  > xz the move is accepted with probability 
exp( -(x‘~ - ~’) /2) ,  otherwise it is rejected. 

4) Repeat from step 2. 
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x2 will initially decrease until it reaches an equilibrium value about which it will 
oscillate. The resulting configuration should be a three dimensional structure that is 
consistent with the experimental structure factor within the experimental error. 
Further independent configurations may then be collected by continuing to run the 
simulation under the same conditions as for MMC. 

This algorithm is usually modified slightly by the imposition of a minimum ‘hard 
sphere’ radius for atoms. This helps to compensate for some errors in the experimental 
data and avoids atoms coming unphysically close together. For some of the elemental 
liquids we have also used a coordination constraint in several ways. The method is 
as follows. Calculate the coordination number, i.e. the number of atoms within a 
certain distance, rc ,  of every atom and thus the fraction f,,, of atoms in the 
configuration that have the required coordination number. Then add on to x 2  an 
additional term, x:, given by 

where freq is the required fraction and cr, is effectively a weighting factor of the 
coordination constraint relative to the structure factor constraint. We can maximise 
the number of atoms with a certain coordination number by putting freq = 1. If we 
choose a starting configuration for which freq = 1 and a very small value for 6, any 
change in f,,, would cause a very large change in x$ with negligible chance of being 
accepted. This effectively prevents ‘bonds’ from being broken and allows us to create 
a model with a particular type of molecular unit, or keep the ‘bonding’ in molecular 
units that already exist. However, because there are no angular constraints, such 
molecules are not rigid. Rigid molecules can be introduced specifically; the random 
motion of a particle is then replaced by a random translation and rotation of the 
molecule’. 

3 RESULTS OF RMC CALCULATIONS ON ELEMENTAL LIQUIDS 

Structure factors, obtained by neutron and X-ray scattering, are reported in the 
literature for many of the elements. In some cases they are published as tabulated 
values and in other cases the tabulated data was obtainable from the authors. For 
the remaining data the published graphs had to be converted into numerical form; 
this was achieved using a digitising tablet. The resulting structure factor data was 
then plotted to make sure that it accurately reproduced the original graphs. 

Table 1 lists all the structure factor data for which results are described here. The 
elements are also shown on the periodic table in Figure 1. The results for liquid 
nitrogen and the halogens’ and some of the results for molten caesium6 and helium-4’ 
have appeared elsewhere; the remainder have not previously been published. We 
expect to publish more detailed results for phosphorus and sulphur separately. 

For some elements more than one set of data was available. It was sometimes clear 
that one of these sets was preferable to another because, for example, it covered a 
larger region of Q-space, was less noisy, or its Fourier transform to g(r) was better 
behaved in the small r region. These methods of data assessment are described further 
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Table 1 Details of data sets modelled 

Element Atomic Group Method Temperature Density References 
number ("C) ( A - 3 /  

A1 
Ar 
As 
Au 
Bi 
Br 
Ce 
c1 
C O  
cs 

c u  

DY 
Er 
Eu 
F 
Fe 
Ga 

Gd 
Ge 

He 
Hg 
Ho 
I 
In 
K 
Kr 

La 
Li 

N 
Na 
Nd 
Ne 

Ni 
P 

Pb 
Pd 

13 
18 
33 
79 
83 
35 
58 
17 
21 
55 

29 

66 
68 
63 
9 

26 
31 

64 
32 

2 
80 
67 
53 
49 
19 
36 

57 
3 

7 
11 
60 
10 

28 
15 

82 
46 

IIb 
0 
Vb 
Ib 
Vb 
VIIb 
L 
VIIb 
VIII 
Ia 

Ib 

L 
L 
L 
Vllb 
VIII 
IIIb 

L 
IVb 

0 
IIb 
L 
VIIb 
IIIb 
la 
0 

IlIa 
la 

Vb 
la 
L 
0 

VIII 
Vb 

IVb 
VIII 

neutron 
neutron 
neutron 
neutron 
neutron 
x-ray 
x-ray 
neutron 
x-ray 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
neutron 
x-ray 
x-ray 
x-ray 
neutron 
x-ray 
neutron/ 
x-ray 
x-ray 
neutron 
x-ray 
x-ray 
x-ray 
x-ray 
x-ray 
x-ray 
neutron 
neutron 
neutron 
neutron 
x-ray 
neutron 
x-ray 
neutron 
x-ray 
x-ray 
neutron 
neutron 
neutron 
x-ray 
neutron 
neutron 
neutron 
x-ray 

680 
- 188 

825 
I100 
293 
20 

870 
22 

1515 
30 
50 

300 
500 
600 
700 
900 

1100 
1400 
1650 
1120 
1560 
1430 
1520 
8 30 

- 196 
1550 

20 

1330 
lo00 
980 

- 270 
20 

1480 
120 
166 
65 

- 156 
- 73 
- 73 
970 
197 
191 

- 208 
100 

1050 
- 247 
- 238 
- 238 
1475 

10 
50 

340 
1580 

0.0526 
0.02125 
0.041 9 
0.0528 
0.0289 
0.02352 
0.0287 
0.02384 
0.0781 
0.00832 
0.00829 
0.00761 
0.00698 
0.00684 
0.00657 
0.00603 
0.00548 
0.00434 
0.00267 
0.0750 
0.072 
0.0302 
0.0301 
0.0183 
0.0495 
0.0755 
0.05272 

0.0265 
0.0456 
0.0456 
0.0226 
0.04068 
0.0301 
0.0 185 
0.0368 
0.0127 
0.0176 
0.01206 
0.0 1 102 
0.0258 
0.0445 
0.0445 
0.03702 
0.0243 
0.0289 
0.0358 
0.0347 
0.0317 
0.0796 
0.03455 
0.03384 
0.03093 
0.0594 

t l  
t2 
t3 
t4 
t5 
t6 
t19 
t7 
t8 
t9, t22 
t 10 
t 10 
t 10 
t 40 
t10 
t 10 
t 10 
t 10 
t 10 
t l l  
t l l  
t12 
t12 
t 19 
t13 
t8 
t 14 

t19 
t15 
t16 
t17 
t18 
t12 
t20 
t21 
t9, t22 
t23 
t24 
t24 
t19 
t25, t22 
t25, t22 
t26 
t27 
t12 
t28 
t 29 
t29 
t8 
t30, t31 
t30, t31 
t32 
t33 
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CeIPr  
13.7 , 14.2 

Table 1 Continued 

Element Atomic Group Method Temperature 
number ("Ci 

NdlPmSm Eu Gd Tb iDy iHo  Er Tm/Yb 12.7 Lu 
15.1 12.5 12.8 14.0 15.9 13.3 13.4 

Pr 
Pt 
Rb 
S 

Sb 

Sc 
Se 
Si 
Sn 
Tb 
Te 

T1 
Yb 
Zn 

Zr 

59 
78 
37 
16 

51 

21 
34 
14 
50 
65 
52 

81 
70 
30 

40 

L 
VIII 
Ia 
VIb 

Vb 

IIIa 
VIb 
IVb 
IVb 
L 
VIb 

IIIb 
L 
IIb 

IVa 

x-ray 
x-ray 
neutron 
neutron 
neutron 
neutron 
neutron 
x-ray 
neutron 
x-ray 
neutron 
x-ray 
neutron 
neutron 
neutron 
x- ray 
neutron 
x-ray 
x-ray 

950 
1780 

40 
130 
220 
658 
660 

1560 
265 

1460 
250 

1380 
450 
460 
315 
8 50 
450 
450 

1900 

0.0282 
0.0577 
0.0103 
0.0335 
0.0330 
0.0322 
0.0322 
0.0391 
0.0298 
0.0538 
0.0345 
0.0274 
0.0272 
0.0272 
0.0331 
0.0216 
0.0604 
0.0604 
0.0391 

t19 
t33 
t34 
t35 
t35 
t36 
t37 
t19 
t39 
t16 
t43 
t19 
t44, t45 
t46, t45 
t48, t49 
t19 
t50 
t 50 
t33 

elsewhere4. Otherwise we performed independent RMC calculations for the different 
data sets and compared them. 

In all cases we used configurations of between 3000 and 4096 atoms. In most cases 
the starting configuration was created by placing atoms in the configuration box at 
random positions and then moving them until the constraint on closest distance of 
approach of atoms was satisfied. The exceptions to this were some of the molecular 

la Ila llla IVa Va  VlaVlla Vlll Jb Ilb lllb IVb Vb  VlbVllb 0 

:Cs iBa iLa /  Hf lTal W iRe 
13.7 ! I 13.8 

/He 

Figure 1 
the results of RMC calculations. Values of (n, , )  are given. 

The periodic table of the elements showing in black those which for which we are presenting 
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Table 2 Some parameters for the simple liquids 

A1 
Ar 
Au 
Ce 
co 
cs 
c u  
DY 
Er 
Eu 
Fe 
Gd 
Ho 
K 
Kr 
La 
Li 
Na 
Nd 
Ne 
Ni 
Pb 
Pd 
Pr 
Pt 
R b  
sc  
Tb 
TI 
Yb 
Zn 
Zr 

680 0.0526 
- 188 0.02125 
1100 0.0528 
870 0.0287 

1515 0.078 1 

1120 0.0750 
1430 0.0302 
1520 0.0301 
830 0.0183 

1550 0.0755 
1330 0.0265 
1480 0.0301 

65 0.0127 
- 156 0.0176 

970 0.0258 
197 0.0445 
100 0.0243 

1050 0.0289 
- 246 0.0358 
1475 0.0796 
340 0.03093 

1580 0.0594 
950 0.0282 

1780 0.0577 
40 0.0103 

1560 0.039 1 
1380 0.0274 
315 0.0331 
850 0.0216 
450 0.0604 

1900 0.039 1 

30 0.00832 

2.65 
2.026 
2.70 
2.10 
3.00 
1.40 
3.0 
2.1 
2.2 
1.90 
3.0 
2.10 
2.25 
1.65 
1.80 
2.15 
2.5 
2.04 
2.1 
2.40 
3.1 
2.198 
2.8 
2.10 
2.75 
1.5 
2.40 
2.10 
2.25 
1.95 
2.85 
2.35 

2.82 
2.56 
2.68 
3.10 
2.89 
3.03 
2.78 
3.26 
2.82 
2.67 
2.79 
2.86 
2.65 
2.82 
3.02 
2.60 
2.85 
2.87 
3.13 
2.59 
2.67 
2.92 
2.70 
3.05 
2.78 
3.05 
2.83 
2.96 
2.9 1 
2.91 
2.61 
3.01 

2.8 
3.7 
2.8 
3.3 
2.5 
5.4 
2.5 
3.5 
3.4 
3.8 
2.5 
3.5 
3.4 
4.6 
3.9 
3.5 
3.0 
3.7 
3.4 
3.1 
2.4 
3.3 
2.6 
3.4 
2.6 
4.8 
2.8 
3.5 
3.2 
3.8 
2.7 
3.1 

7.4 
7.5 
7.6 
6.9 
7.5 
7.6 
7.5 
7.4 
7.5 
7.2 
7.5 
7.4 
7.7 
7.6 
7.0 
7.5 
7.5 
7.6 
7.1 
7.4 
7.4 
7.3 
7.3 
7.1 
7.2 
7.2 
6.7 
7.4 
7.2 
7.4 
7.7 
7.3 

3.7 
5.1 
3.9 
4.9 
3.4 
7.4 
3.5 
5.1 
4.8 
5.5 
3.5 
4.9 
4.8 
6.4 
5.9 
5.1 
4.2 
5.0 
5.1 
4.5 
3.4 
4.7 
3.8 
5.0 
3.8 
6.8 
4.4 
5.0 
4.5 
5.3 
3.8 
4.1 

11.2 
11.5 
12.7 
13.7 
12.5 
13.7 
13.0 
15.9 
13.4 
12.5 
13.0 
12.8 
13.3 
13.5 
14.1 
13.8 
13.4 
12.8 
15.1 
12.8 
12.8 
13.1 
12.9 
14.2 
12.9 
13.2 
13.4 
14.0 
12.7 
12.7 
13.1 
11.7 

systems described later. The RMC calculation was then run until a good fit to the 
experimental data was achieved. The general approach we adopted was to perform 
an RMC calculation with no coordination constraints and then investigate the local 
structure within the distance defined by the first minimum in -g(r).  In the cases where 
it was appropriate we then went on to investigate alternative structures obtainable 
using coordination constraints. 

The structure factor of most of the elemental liquids are very similar. They are 
liquids that can be described well using pairwise additive potentials and have a 
relatively simple structure. We shall consider these ‘simple’ liquids first and then go 
on to consider the remaining ‘complex’ liquids. 

3.1 Simple liquids 

Because of the differing sizes of the atoms in the various liquids the structure factors 
of the elements would be expected to peak at different Q values. It is therefore better 
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0 5 10 15 20 25 30 

rQ, 

0 5 10 15 20 25 30 

rQ, 

Figure 2 Examples of RMC fits for the simple liquids: top copper, bottom europium. On the left we 
show the experimental structure factor (solid line), the RMC fit to it (dotted line), and the difference (dashed 
line); on the right we show the g(r) obtained by Fourier transformation of the experimental data (solid 
line), that obtained from RMC (dotted line), and the difference (dashed line). 

to compare them when plotted as a function of some dimensionless variable such as 
Q/Q1, where Q1 is the position of the first peak in S(Q). When this is done the structure 
factors for 32 of the elements are found to be very similar whilst those of the 
remainder are significantly different. We shall call the former simple liquids; they are 
listed in Table 2. 

Because of space considerations we cannot show all the fits but two examples are 
given in Figure 2. In most cases the RMC calculations produced a good fit to the 
experimental structure factor with the case of molten copper, shown in the figure, 
being a typical example. However in some cases, namely those of dysprosium, erbium, 
europium, holmium, neodynium, scandium and t e r b i ~ m " ~ . " ~  it was not possible to 
fit the structure factor well. The example of europium is also shown in figure 2 where 
it can be seen that on Fourier transformation to real space the experimentally 
determined g(r) is fitted well except in the region where r is less than the closest 
distance of approach allowed. This means that it is not possible to fit the structure 
factor well with a physically reasonable structure and therefore that the experimental 
data in these cases must contain significant errors. Nonetheless, the fits we do obtain 
are consistent with these being simple liquids so we have included the results in Table 
2 even though they may be less accurate than the remainder. 
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212 M. A. HOWE et a/ .  

The details of the experimental data and RMC fits are given in Table 2. For those 
elements for which we have more than one set of data we have used that correspond- 
ing to the highest density. Densities have been expressed in a dimensionless form by 
dividing Q:; they vary from 2.56 to 3.13. We also give values of r l ,  the position of 
the first maximum in g(r), rc,  the position of the first minimum in &), the product 
Q1, r I ,  and the average coordination number, (n,), which is the average number of 
atoms within a distance rc from a central atom. The structure factor data is defined 
typically at 0.05 k to 0.1 A -  intervals whilst the pair correlation function g(r)  is 
calculated at 0.1 A intervals and this determines the precision of Q , ,  r l r  r,, and the 
quantities derived from them. The resulting uncertainty in Q l r l  is approximately 
kO.3; within this margin of error Qlr ,  can be considered to be constant with a mean 
value of 7.4. 

The value of (n,) depends quite critically on the value of r,. For example, for 
aluminium increasing I ,  from 3.7 10 3.8 A increases (n,) from 11.2 to 11.8. As in 
some cases there is some ambiguity in determining the value of I ,  even to the nearest 
0.1 A, it is clear that the quoted coordination numbers should not be considered 
particularly precise (coordination numbers are often quoted for such liquids with an 
unrealistic precision). We can see, though, that they are consistent with one another, 
varying from 11 to 15, with a mean value of 13.2. There is also some correlation 
between density and coordination number, with coordination number increasing with 
density, as would be expected. This is shown in the case of copper by fitting the 
higher temperature data, for which the density is lower, where we obtain (n,) = 12.6 
rather than 13.0. 

The details we have discussed so far are all obtainable directly from S(Q) and from 
g(r),  which can be obtained from S(Q)  by Fourier transformation. It might be thought, 
therefore, that we have not gained anything by using RMC. This is in fact not entirely 
true as RMC has produced self-consistent structures and in so doing allows us to 
overcome, to some extent, certain systematic errors in the data. However with the 
RMC model we can go on to consider three-particle correlations such as 'bond-angle' 
distributions. 

In Figure 3 we show the structure factors, S(Q/Q1) ,  the pair correlation functions, 
g(rQ and the bond-angle correlations, b(cos 0), for the simple liquids. b(cos 0) is 
defined as the probability of two neighbours within r, of a central atom forming an 
angle 6 with the central atom. We see that the structure factors are very similar. In 
fact the only significant difference is in the sharpness of the first peak; this is indicative 
of the range of structural correlations. The g(r)'s are also similar, with the main 
difference again being the height of the first peak. Looking at the bond-angle 
correlations we see that argon, which has the lowest reduced density of all the liquids, 
has a slightly higher peak than the rest, otherwise they are all quite similar with some 
variation in the height of the mean peak coupled with a shift from cos O z 0.58 
(0 z 54.5') to cos 0 z 0.65 (0 z 49.5'). Given the similarity in structure factors it is 
hardly surprising that the structures produced by RMC have almost identical three 
body correlations. Analysis of the bond angle distributions using the method of 
spherical harmonic invariants' shows that the local structure of these liquids may 
be described as a distortion of the hexagonal close packed (hcp) structure. This is 
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Figure 3 RMC results for the ‘simple liquids’. Top: S(Q). Middle: g(r). Bottom: b(0). 
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consistent with the average coordination numbers. The alkali metals, europium, iron 
and zirconium melt from a body-centred cubic crystal structure but the remainder 
melt from a close-packed structure, hexagonal in the case of many of the transition 
metals and cubic in the remainder. 

All the results discussed so far were obtained at densities close to the triple point 
densities. It is to be expected that there will be a change in structure as the temperature 
is increased and density decreased. We have reported elsewhere6 the results of RMC 
modelling of molten caesium at various points along the liquid-vapour co-existence 
curve. As the temperature is increased from 5WC, through 300"C, 5OO0C, 700"C, 
900°C, llOO°C, and 1400°C to 1650°C the positions of the first maximum and first 
minimum of the radial distribution function remain approximately constant, with 
values of r l  z 5.5 A and r, % 7.5 A (although r, has the slightly higher value of 7.8 A 
at the highest temperature). This means that one can still think of there being a first 
coordination shell within this distance. The mean coordination number decreases 
linearly with density but the spread in coordination numbers of individual atoms 
broadens considerably indicating a tendency to cluster at the lower densities. An 
analysis using spherical harmonic invariants suggests that the local structure changes 
from hexagonal close packed through body-centred cubic to icosahedral at 1100°C. 
The lower densities of krypton and neon also show icosahedral local symmetry but 
the level of disorder is, of course, greater than that at the higher densities. 

It should be stressed at this stage that description of the local structure in terms 
of a crystalline 'analogue' is made on the basis of the average bond orientational 
order within the first coordination shell only, in comparison to a restricted set of 
possible crystalline symmetries. One should not therefore interpret this as indicating, 
for instance, the existence of well defined icosahedra in krypton. Rather one should 
consider this information either comparatively or in terms of the general 'type' of 
ordering, e.g. close packed (fcc, hep) or open (diamond). 

3.2 Helium 

4He undergoes a phase transition at the i-point, TA = 2.17 K. Above this temperature 
it behaves as a normal fluid, while below it may be considered to be a mixture of 
normal fluid and superfluid with the superfluid concentration increasing as T 
decreases. It has generally been believed that the occurrence of the superfluid phase 
can be detected by a change in atomic structure. Pusztai and McGreevy7 have used 
RMC to create three dimensional particle configurations of condensed 4He that are 
consistent with diffraction data at ten different temperatures across the superfluid 
transition. They showed that all observable changes in the data are within the 
experimental uncertainties, so no c:onclusions can be drawn concerning possible 
structural differences between normal fluid and superfluid. 

We will here consider just one of their results, that for helium-4 at 2.80 K and a 
density of 0.0226 k3. The structure factor and RMC fit and the g(r)  and bond-angle 
distribution calculated from the RMC model are shown in Figure 4. The small 
shoulder on the left hand side of the first peak in g(r )  reflects the existence of systematic 
errors in the data being modelled. The structure factor is characteristically different 
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rQ, 

Figure 4 RMC results for liquid helium-4 at 2.8 K. Top: The experimental (solid line) and RMC (dashed 
line) S(Q). Middle: g(r). Bottom: b(0). 
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from those of the simple liquids. The height of the first peak is significantly lower 
and there is a broad low Q tail. g ( r )  has a correspondingly lower and broader first 
peak. The average coordination number is 11-12. The bond-angle distribution differs 
from those of the simple liquids, being virtually structureless for cos 8 50.25 and 
peaking at cos 6 = 0.17, slightly higher than for the simple liquids. The calculation 
of spherical harmonic invariants suggests that the local structure is dominantly 
icosahedral, as with other low density simple liquids. 

3.3 Weekly covalent iiquids 

3.3.1 Group Ilb: zinc and mercury The simple liquids are those in the periodic 
table from groups Ia to Ib, plus the rare earths (see Figure 1). As one moves into 
group IIb there is some evidence of increasing complexity. The first peak of the 
structure factor of zinc is slightly asymmetric, but not sufficiently so to enable any 
more detailed analysis without considerably more accurate data than are currently 
available; zinc has therefore been included with the simple liquids. 

The structure factor and pair correlation function for liquid mercury look at first 
sight similar to those of the simple liquids. However, as we can see from Figure 5 
where they are compared to the results for molten gold (chosen as a typical simple 
liquid), they are not quite the same. Here the scaling factor Q1 has been chosen to 
make the high Q oscillations in S(Q)  coincide; this also makes the first peaks in g(r)  
coincide. The first peak in the structure factor for Hg is now at a lower value of 
Q/Q,, relative to that of Au, and can be seen to be slightly asymmetric. The first 
peak in g(r )  is correspondingly slightly more asymmetric on the high r side and the 
first minimum in g ( r )  is higher. These are characteristic features which will be seen 
to develop further across the periodic table. As the first minimum in g(r) becomes 
less well defined it is more difficult to decide how to define r,. Consequently we have 
chosen, for all the liquids described in this section, to use the same relative value of 
rcQl  as for Au, that is r,Q1 = 10.6. We shall indicate this average coordination 
number by (n, , ) ;  for all the simple liquids (n,,) z (n,). (n,,) for Hg is then 12.4, in 
the simple liquid range. The bond-angle distribution is similar to those of the simple 
liquids and a spherical harmonic analysis suggests a similar local structure. 

3.3.2 Aluminium and thal- 
lium have been categorised with the simple liquids. Results for gallium and indium 
are shown in Figure 6. We see that the asymmetry in the first peak of S(Q)  has now 
developed into a shoulder on the high Q side, this being stronger for Ga. The first 
peak is again at  lower Q. g(r) differs little except that the first peak is slightly higher, 
and possibly narrower, than is usual for the simple liquids. (n,,) is 12.5 for both 
gallium and indium. The bond-angle distribution and spherical harmonic analyses 
again indicate that the local order is similar to that of the simple liquids. 

Group IIIb: aluminium, gallium, indium and thallium 

3.3.3 Group ZVb: silicon, germanium, tin and lead The experimental data available 
for molten silicon appears to contain significant systematic errors and we are not 
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Figure 5 RMC results for liquid mercury (solid line) compared with those for gold (dashed line). Top: 
S(Q). Middle: g(r). Bottom: b(ff). 
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Figure 6 
gold (dashed line). Top: S(Q). Middle: g(r) .  Bottom: b(6'). 

RMC results for molten gallium (solid line) and indium (dotted line) compared with those for 
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Figure 7 
Bottom: h(B). 

RMC results for molten germanium (solid line), and tin (dashed line). Top: S(Q). Middle: y(r).  
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able to obtain good fits. However the model we do derive shows all the same features 
as that for germanium described below. 

Lead has been categorised with the simple liquids, but detailed work by others’ 
has shown that the structure factor cannot be exactly described by a pairwise additive 
potential. We show the RMC results for tin in Figure 7. The structure factor is similar 
to that of Ga, i.e. the main peak occurs at Q/Q1 < 1.0 and there is a shoulder on the 
right hand side. g(r) now also has an observable shoulder on the right hand side of 
its first peak and the minimum is not well defined. (n , , )  is 12.6. b(6) shows less 
structure than for the simple liquids; the peak at cos 0 M 0.5 is lower, the minimum 
at z 0.2 is higher and there is only a weak peak at z -0.13, but the spherical 
harmonic analysis still suggests a dominantly close packed local structure. 

We have obtained an excellent lit to both neutron and X-ray data for molten 
germanium. S(Q) is significantly different (see Figure 7). The first peak is much lower 
and the shoulder much stronger. The peak in g(r) is also low and asymmetric and 
the first minimum is very weak and ill defined so that it is impossible to define rc 
and hence to determine ( n , ) .  (n , ,>  is 9.5, significantly lower than for the simple 
liquids. b(6) only shows a single peak at cos 6 % 0.65 and is otherwise flat. Spherical 
harmonic analyses suggests that the local structure is diamond-1 6, i.e. diamond 
structure with overlap of first (4) and second (12) coordination shells. Taking this 
together with the relatively low average coordination number and the ill defined first 
minimum it is possible to suggest that when germanium melts there is a partial 
collapse of the diamond structure towards a more close packed structure, but that 
there is still significant covalent bonding even though molten germanium is metallic. 

3.3.4 Group Vb: bismuth and antimony The structure factors of bismuth and 
antimony are characterised by the presence of a distinct shoulder, indeed almost a 
peak, on the high Q side of the first peak in S(Q) at a higher Q/Q1 than for the 
elements we have already discussed. The first peak in g(r)  is somewhat similar and 
appears to be a combination of a tall narrow peak at  rQ1 M 8 and a lower 
broader one at rQ1 M 10. The first minimum in g(r) is then shifted to rQ1 M 12.6, 
compared to 10.6 for the simple liquids. In a simple sense these features may be 
understood to indicate the presence of two equilibrium interatomic separations, 
though one is dominant. These two separations are due to competition between 
metallic and covalent bonding. The RMC results are shown in Figure 8. 

(n, ,)  is 11.5 for Bi and 12.6 for Sb, comparable to the simple liquids. b(cos O), apart 
from a peak at cos 6 M 0.65, is relatively featureless. Spherical harmonic analysis gives 
diamond-16 and hcp as possible structures for Bi, and hcp, diamond-16 or bcc-14 
for Sb. As with Ge this is indicative of a weak tendency towards a more open local 
structure, but close packing still dominates. 

3.4 Strongly covalent liquids 

It may be possible to represent the interactions in a liquid such as bismuth, where 
three body interactions are obviously required but weak, by an effective two body 
interaction. In this case RMC should produce a reasonable model of the structure 
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without constraints. However more complex structures occur for elements such as 
arsenic, selenium, and tellurium where covalent bonding has greater importance. They 
are not, however, entirely molecular so three body terms are important but suitable 
constraints to use in RMC modelling are not obvious. For completely molecular 
liquids such as phosphorus, sulphur, nitrogen and the halogens, coordination con- 
straints can be used to produce flexible molecules, or rigid molecules can be used 
directly. 

3.4.1 Group Vb: arsenic, phosphorus and nitrogen The data for As have been 
recorrected on account of an apparently incorrect subtraction of the scattering from 
the silica sample container used in the experiment; this produced a strong negative 
peak in g(r)  at x 1.6A- '  corresponding to the Si-0 bond length. Without this 
correction it was not possible to obtain a good fit to the data. The RMC fit is shown 
in Figure 9. The shoulder on the high Q side of the first structure factor peak for Bi 
and Sb has now grown into a distinct peak; correspondingly the shoulder in g(r )  has 
become the second peak and there is a distinct first minimum. The average coordina- 
tion number up to this minimum is (n,)  = 3.75, while (n,,) = 6.1. 

g(r) for amorphous arsenic has a sharp first peak and a minimum g(r,) % 0, i.e. 
there is a well defined bond length and coordination number". The value of 3.07 is 
consistent, with errors, with 3-fold coordination as in the crystal. Bellisent ef 
suggest that this is maintained on melting and quote a coordination number of 3.00 
for the liquid. However the shapes of g(r)  and S(Q) for liquid As differ significantly 
from those of amorphous As. The fact that our coordination number is larger than 
that of Bellisent et al. is partly because we have recorrected their data. However even 
when we use their original data we find a coordination number of 3.64. We therefore 
suggest that, while 3-fold coordination may dominate, other coordinations occur. 
This is consistent with the fact that g(r,) x 0.8, i.e. the first minimum is not close to 
zero so there is overlap of first and second coordination shells. In fact the coordina- 
tion number distribution peaks between 3 and 4 but ranges from 0 to 8. 

The bond angle distribution (Figure 9) is now significantly different from the simple 
liquids. There are strong peaks at 60°, 90" and 180". Because the covalent bonding 
is strong it will not now be possible to describe liquid arsenic using a pairwise additive 
potential, so RMC will not correctly reproduce the three body correlations. However, 
since the liquid is also not entirely molecular and does not have a well defined 
coordination, there are no suitable constraints that can be used. It is not logical to 
attempt to maximise the 3-fold coordination since (n,) is significantly larger than 3. 

Liquid phosphorus is well known to be molecular. The experimentally determined 
g(r )  has a sharp first peak and then decreases to zero with (n , )  E (n,,) % 3. This is 
consistent with the existence of P, molecules, which are known to be stable in the 
vapour phase. The structure factor (Figure 10) is quite different from that of As 
(Figure 9). The sharp first peak at Q/Q1 = 0.42 and the small second peak at  0.73 
are essentially the structure factor for the inter-molecular correlations and the 
subsequent peaks are the molecular form factor, i.e. intra-molecular correlations. 

We have modelled phosphorus in three different ways. Firstly we have used RMC 
with no constraints; for such strongly covalent bonding this would not be expected 
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Figure 9 RMC results for liquid arsenic. Top: The experimental (solid line) and RMC (dashed line) S(Q) .  
Middle: g(r).  Bottom: b(8). 
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Figure 10 RMC results for phosphorus. Top: S ( Q )  showing experimental data (dotted line) and RMC 
results for unconstrained fit (solid line), for P, coordination constrained model (dashed line) and for P, 
rigid molecule model (dash-dot line). Middle: y(r) for unconstrained fit (solid line) and for P, coordination 
constraincd model (dashed line). Bottom: h(B) for unconstrained fit (solid line) and P, coordination 
constrained model (dashed line). 
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Figure 11 RMC results for diatomic molecules. Top: S(Q) showing experimental data (solid line) and 
RMC fit (dashed line) for fluorine (upper curves) and iodine (lower curves). Middle: S,(Q) for, from a top 
to bottom, nitrogen, fluorine, and iodine. SJQ) for nitrogen is compared to a S(Q)  for a simple liquid 
(dashed line). Bottom: g,(r) for, from top to bottom, nitrogen, fluorine, and iodine. 
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to reproduce the correct three body correlations. Secondly we have used a constraint 
of 3-fold coordination, starting from a configuration of P, molecules; this produces 
flexible molecules. Thirdly we have used rigid P, molecules. The rigid molecule model 
does not fit the data as well as rhe other two, indicating that some molecular 
distortion is required. This is consistent with the width of the first peak in the 
experimental g(r )  which is greater than expected from the Q range of the data. The 
experimental S(Q)  and RMC fits are shown in Figure 10. For the unconstrained fit 
the bond angle distribution has a peak at 60" and secondary peaks at higher angles. 
The flexible molecule model has only the 60" peak with a width of & 15". For the 
rigid molecule h(cos 0) is of course a delta function at 60". The angular correlations 
in phosphorus will be discussed in detail in a separate paper. 

Liquid nitrogen consists of diatomic molecules and the data can be fitted well 
using rigid molecules5. The structure factor for molecular centres, S,(Q), and the 
corresponding radial distribution function, gc(r), are shown in Figure 11. It can be 
seen that g,(r) is very similar to a simple liquid g(r) indicating simple pairwise additive 
inter-molecular forces. 

3.4.2 Group VIb: tellurium, selenium and sulphur The structure factor for tellurium 
is shown in Figure 12; it is quite similar to that for arsenic (Figure 9), as is g(r). There 
is a well defined first minimum in y(r) but the height is 0.9 so there is considerable 
overlap of first and second coordination shells. (n,) z 2.6 while (a,,) z 5.5. The 
latter value is far lower than that for simple liquids but much larger than the former. 
Clearly the liquid is not molecular; there is strong covalent bonding but still some 
influence of close packing. I t  is often considered that chain formation, i.e. 2-fold 
coordination, is an important feature of the structures of elements in this group. 
However since the minimum is g(r)  is not low and (n,) is larger than 2 there is no 
sensible way of using coordination constraints. 

S(Q)  for selenium (Figure 13) is significantly different from that for tellurium, with 
the first peak being very broad and low. It can be seen to be intermediate between 
that for tellurium (Figure 12) and sulphur (Figure 14). g(r) has a well defined first 
minimum but (n,)  = 2.9, rather than 2 as would be expected for a chain structure. 
This might possibly be due to errors in the data, though there is no particular evidence 
to support such an idea. A good fit to the data can in fact be obtained with high 
degree of 3-fold coordination, though from a knowledge of the crystal structure and 
chemistry of selenium this would not be a logical choice. b(cos 0) is similar to those 
for arsenic and teflurium, but the central peak occurs at 105", rather than 95", 
indicating a slightly larger bond angle and more open structure. 

An excellent fit has been obtained to S(Q)  for sulphur (Figure 14). g(r) has a sharp 
first peak and low first minimum, with ( n , )  z (n,,) z 2. This indicates a highly 
molecular liquid. We have modelled sulphur in three different ways - using no 
constraints, maximising 2-fold coordination (to about 96%) to produce a 'chain' 
model, and with flexible S, ring molecules. Details will be discussed in a separate 
paper. However it is worth noting here that the fits to the data are almost identical; 
this is not surprising since the difference between an S, ring and chain involves an 
8-body correlation function, whereas S(Q) is only a 2-body correlation function. 
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Figure 12 RMC results for molten tellurium. Top: The experimental (solid line) and RMC (dashed line) 
S(Q). Middle: g(r). Bottom: b(0). 
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Figure 13 
S(Q). Middle: g(r) .  Bottom: b(0). 

RMC results for molten selenium. Top: The experimental (solid line) and RMC (dashed line) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



DETERMINATION OF THREE BODY CORRELATIONS I N  SIMPLE LIQUIDS 229 

- 

5.0- 

2.5- 
- 

- 

0.0 

h L v 

5 l  

,""""""'1'''' 

2.0 

1.5 

h 

23 1.0 
LJ 

0.5 

0.0 
-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1 .o 

cos(e) 

Figure 14 RMC results for molten sulphur. Top: S(Q) at 130°C showing experimental data (solid line) 
and RMC results for unconstrained fit (dashed line) and ring model (dotted line). Middle: g(r)  at 130°C 
(solid line) and 220°C (dashed line). Bottom: b(0) for molten sulphur at 130°C obtained from ring model 
(solid line), chain model (dotted line) and unconstrained fit (dashed line). 
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b(cos 0) is shown in Figure 14. For the unconstrained model there is a sharp peak 
at  60" due to the existence of a small number of equilateral triangles (the peak is 
large because the triangles are necessarily well defined). These probably do not exist 
in reality and their number is decreased in the chain model. It would be possible to 
include a constraint to remove them but this would be computationally expensive 
and was not felt to be worthwhile at present. 

3.4.3 Group VZZb: the halogens The structures of the diatomic molecular liquid 
halogens have already been discussed in detail by Howe5. Examples of RMC fits are 
shown in Figure 11, together with the molecular centres correlation functions from 
the RMC models. They are similar for all four halogens with the structure factors 
S,(Q) being relatively featureless apart from a single peak corresponding to the rapidly 
decaying oscillations in gc(r). Liquid nitrogen differs by having oscillations in g,(r) 
extending over a much longer distance indicating longer range positional correlations. 
g,(r) for the halogens is different from a simple liquid g(r),  indicating more complex 
intermolecular interactions than for nitrogen. 

One way of considering orientational correlations in diatomic molecular liquids 
is in terms of a spherical harmonic expansion"*'* of the molecular pair correlation 
function g(r, O , ,  0 2 ,  4). This function is the equivalent of g(r )  for atoms but depends 
not only on the distance, r,  between the molecular centres but on the relative 
orientations of the molecules. It is possible to expand this function as an infinite 
series of the orthonormal set of spherical harmonics. A study of these functions 
calculated from the RMC results5 has lead to the conclusion that orientational 
correlations are largely confined to the nearest neighbour coordination shell. They 
can partly be accounted for by geometric factors although there is an increased 
tendency in the halogens for neighbouring molecules to be aligned end to end which 
contrasts with what would be expected from a purely quadrupole interaction. The 
differences between the structure factors of the different halogens are a result of the 
different elongations and anisotropic interactions of the molecules. 

3.5 Electron correlations 

There are a number of studies in the literature where the differences between the 
structure factors measured by X-ray and neutron scattering have been used to derive 
information about electron correlations, since the X-ray structure factor is determined 
by the electron density distribution and the neutron structure factor by the nuclear 
density distribution. We have fitted both X-ray and neutron data for molten lithium 
and germanium; these both have a relatively high ratio of bonding to core electrons 
and so any effects might be expected to be relatively large. The available data is also 
of good quality. We have found that the (small) differences between the X-ray and 
neutron data are within the errors and hence no conclusions can be drawn about 
electron correlations. Given the experience we have gained throughout this work of 
the general level of systematic errors in liquid structure factors we would suggest 
that suitably accurate data for determination of electron correlations are not yet 
available. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



DETERMINATION OF THREE BODY CORRELATIONS IN SIMPLE LIQUIDS 231 

4 DISCUSSION 

4.1 IThree body correlations 

It has been stressed earlier that, for liquids where 3-body forces are significant (strong 
covalency), one would not expect RMC to produce exactly the 'right' structure. 
However it is clear that it nevertheless produces an indication of the structural trends, 
and the following discussion should be taken as referring to those trends, rather than 
making absolute statements about the structure of particular liquids. 

The trends in 2-body correlations with increasing covalency are seen most clearly 
in terms of (n,,). While we have previously criticised the use of average coordination 
numbers as a significant way of categorising a structure4 this criticism was based on 
the use of ( n , )  as an absolute number, particularly when the first minimum in g(r)  
is poorly defined. Here we will use the average coordination number <n,,) as defined 
earlier; the radius for calculation of the coordination number has then been defined 
in the same relative way for all the liquids and the coordination number itself is only 
used as a relative quantity. For the simple liquids and most of the weakly covalent 
liquids (as categorised above) (n , , )  M 13 (see Figure 1 and Table 3), i.e. one can 
consider that if (nsl)/13 M 1 then close packing dominates the structure. The first 
significant deviation from this on moving across the periodic table occurs for 
germanium in group IVb, where (nsl)/13 M 0.75. Close packing still dominates but 
there are significant effects of covalency. For arsenic and tellurium (nsf)/13 sz 0.5 so 
these may be considered intermediate, while for selenium (nsl)/13 M 0.5 but (n, , )  is 
greater than ( n , )  so the system is not entirely molecular. 

Table 3 Some parameters for the weakly and strongly covalent 
liquids 

Element Temperature Density (n , )  (n,d 
"C ( A - 3 )  ?&') 

As 
Bi 
Br 
C1 
F 
Ga 
Ge 
Hg 
I 
In 
N 
P 
S 
Sb 
Se 
Sn 
Te 

825 
293 

20 
22 

- 196 
20 

lo00 
20 

120 
166 

- 208 
50 

130 
658 
265 
250 
450 

0.0419 
0.0289 
0.02352 
0.02384 
0.0495 
0.5272 
0.0456 
0.04068 
0.0185 
0.0368 
0.03702 
0.03455 
0.0335 
0.0322 
0.0248 
0.0345 
0.0272 

3.05 3.15 6.1 
2.30 - 11.5 

1.0. - - 
1.0 - 

1.0 - 

- 

- 

2.71 - 12.5 
2.81 - 9.5 
2.51 - 12.4 

2.40 - 12.5 

3.5 2.9 3.1 
3.7 1.92 2.2 
2.3 - 12.6 
3.2 2.9 3.1 
2.35 - 12.6 
2.7 2.6 5.5 

1.0 - 

1.0 - 

- 

- 
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232 M A. HOWE et al. 

The structural changes with increasing covalency can be seen more clearly in terms 
of the 3-body correlation function g(r,  cos 0). We define the y axis by the vector 
joining an atom and its nearest neighbour. The distribution of all other atoms is then 
calculated as a function of their distance from the central atom, r = Irj, and the angle 
0 between r and the y axis. This is averaged over all atoms as centres. Note that 

g(r,  cos 19) # b(cos B), since the angular distribution is taken relative to the nearest 
neighbour only, not relative to all nsighbours within r,. 

An example of g(r,  cos 0) for a simple liquid (lead) is shown in Figure 15. The 
distribution of nearest neighbours occurs along the line cos 0 = 1 (since they define 
this axis) at r % 3 A. The first coordination shell is the ridge along I x 3.3 A and the 
second coordination shell the very weak ridge along I % 6.2 A. The first shell has a 
strong maximum at cos 8 NN 0.45 (0 x 60"), a weaker maximum at - 0.45 (120") and 
a weak maximum at - 1.0 (180"). (Some features of g(r ,  cos 0) described are, un- 
fortunately, not particularly clear in a black and white contour plot, but are obvious 
in colour.) The comparable maxima in b(cos 0) occur at  cos 0 = 0.6, -0.3 and - 1 

0 2 3 4 5 6 7 

r 
1 

h 

0) O J  
00 

1 
0 1 2 3 4 5 6 7 

r 

0 1 2 3 4 5 6 7 8 

r 

Figure 15 Contour plots of g(r ,  cos 0) for group IVb elements; lead, tin and germanium. Darker regions 
have higher density. 
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(see Figure 3). It might initially be thought that the 60" peak is simply indicative of 
'hard sphere' triplets at the closest approach distance, but for a hard sphere liquid 
at an equivalent packing fraction this peak is actually much weaker. It is in fact 
indicative of a sharp peak in g(r), i.e. if the distribution of neighbour distances in the 
first coordination shell is narrow and the coordination number is large there will be 
a large number of triplets with very similar interatomic separations and so a 
preponderance of bond angles around 60". Because the nearest neighbour is used to 
define the axis the peak will occur at an angle slightly above 60", i.e. cos 0 < 0.5. 

4.1.1 Group IVb: germanium, tin and lead g(r, cos 8) for Pb has been described 
above. For So (Figure 15) the 60" peak in the first coordination shell is weaker and 
the 120" peak has spread from 120" to 95". For Ge the 60" peak is very weak and 
the second peak is now centred around 104", close to the tetrahedral angle of 109". 
Note that g(r, cos0) shows more distinct angular correlations than b(cos 0) (Figure 
7). These results indicate a gradual change from a structure based on hexagonal close 
packing to one based on the diamond structure as the strength of covalent bonding 
increases from Pb to Sn to Ge. Clearly the preferred coordination number for covalent 
bonding would be 4. 

4.1.2 In Figure 16 
we show g(r, cos 6) for the group Vb elements. For phosphorus we have used a flexible 
P, molecule model, and for nitrogen a rigid N, molecule model. 

g(r, cos 0) for Bi is significantly different from that for the simple liquids (see e.g. 
Pb in Figure 15). The 60" peak in the first coordination shell is weak. The secondary 
peak occurs from 70"-100" and there is a minimum around 120"-130", whereas the 
opposite is true for Pb. Also the 60" peak has a very slight 'spike' towards shorter 
distances. These results are indicative of a structure which is basically close packed, 
as for the simple liquids, with a very slight tendency to form tetrahedra (Bi,) with a 
shorter bond length. Such tetrahedral units occur in the crystal structure. For Sb the 
results are less clear. The 60" peak is weaker and g(r, cos 8) is still higher around 
70"-100" and lower around 110"-130". The lack of well defined features is quite 
similar to the case for germanium, so it is likely that this is caused by the structure 
being intermediate between close packing and covalency. For As the 60" peak is very 
weak and there is now a peak at 100". Even though the angular correlations in the 
first coordination shell are weaker than for Bi or Sb there is weak evidence of 
particular angular correlations in the second and third shells. For phosphorus the 
first coordination shell is clearly seen at 60", since the P, molecule is tetrahedral. 
There is a single strong peak at cos 6 z -0.75 in the second coordination shell and 
a very weak one at 0.25. Three peaks can be seen in the third coordination shell, the 
strongest being at cos 6 z 0.8, and a very weak peak in the fourth shell at a similar 
angle. These peaks are indicative of definite angular correlations between molecules; 
such correlations must occur since the P, molecules are strongly aspherical and yet 
closely packed. The intra-molecular correlations will be discussed in detail elsewhere. 
For nitrogen the second correlation shell in g(r, cos 0) shows no strong features. This 

Group Vb: bismuth, antimony, arsenic, phosphorus and nitrogen 
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DETERMINATION OF THREE BODY CORRELATIONS IN SIMPLE LIQUIDS 235 

Figure 16 Contour plots of g(r,  cos 0) for group Vb elements, bismuth, antimony, arsenic, phorphorus 
and nitrogen. Darker regions have higher density. 

is consistent with the simple liquid form of g,(r) (Figure 1 l), indicating no significant 
angular correlations between molecules. 

The effect of an increasing tendency to covalency, which in the group Vb liquids 
means a tendency to 3-fold coordination, can be shown by a very simple model. We 
have run a conventional hard sphere Monte Carlo simulation with a fixed packing 
fraction, but have applied a coordination constraint in the manner described in 
section 2. The proportion of atoms, freq (see Eq. 4), with 3-fold coordination between 
3.65 A (hard sphere diameter) and 4 A has gradually been increased. The resulting 
structure factors are shown in Figure 17. As freq increases the first peak in S(Q)  splits 
and then the higher Q side becomes dominant. At the same time oscillations at large 
Q become more pronounced. While this behaviour is clearly not identical to that 
observed in e.g. bismuth it does show how a shoulder/split first peak in S(Q) can 
arise from a very weak local tendency to lower coordination (covalent bonding). 

The trends within this group show that there is an increasing tendency to 
tetrahedral bonding from Bi + Sb + As -, P. In the case of bismuth this is very weak, 

A 1 

1 

y _  -I 

- 
1 ~ 1 ~ 1 [ 1 ~ 1 ~ ' ~ 1 ~ 1 ~ 1 ~  

1 2 3 4 5 6 7 8 9 

QA' 
Figure 17 S(Q)  for hard sphere simulations with increasing 3-fold coordination between 3.65 and 4.0 A 
(see text for details). The curves, successively offset by 0.5, are for 1.3%, 9,2%, 18.5%, 27.5% and 37.4% 
3-fold coordination in ascending order. 
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Figure 18 Contour plots of g(r,  cos 0) for group VIb elements; tellurium, selenium and sulphur. The three 
plots for sulphur refer to, in descending order, the unconstrained model, chain model and ring model. 
Darker regions have higher density. 

yet sufficient to noticeably distort S(Q)  from that expected for close packing. In 
antimony it is stronger; this is more noticeable from g(r, cos 0) than from b(cos 0). 
For arsenic there is now a definite shift away from close packing to covalent bonding, 
but this is not sufficiently strong that permanent molecules are formed. Instead one 
could consider the structure as consisting of a mixture of quasi-molecular and close 
packed regions, but with rapid exchange of atoms between the regions. 

4.1.3 Group VIb: tellurium, selenium and sulphur g(r, cos 0) for tellurium, selenium 
and sulphur are shown in Figure 17. For sulphur we compare unconstrained, chain 
and ring models. In this group the expected preferential bonding is 2-fold coordina- 
tion. In the case of tellurium g(r, cos 19) is almost featureless; in fact second shell 
features are stronger than those in the first shell. Selenium has a well defined 60" 
peak in the first shell but this may be an artefact due to the existence of equilateral 
triangles as discussed above for sulphur. The unconstrained sulphur model has a 
similar peak, it is weaker for the chain model and absent for the ring model. However, 

. .  . , 

J 

Figure 19 5 A thick sections of RMC models of tellurium (top left), selenium (top centre) and sulphur 
(unconstrained model-top right, chain model-bottom left, ring model-bottom right). 
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the other features are similar. We would therefore suggest that the 60” peak be ignored 
for selenium and sulphur. One can then see that there are clear trends in going from 
Te -+ Se + S; features occur in similar relative positions and simply strengthen with 
increasing covalency. The trends can also be shown by direct examination of the 
RMC models. In Figure 19 we show 10 A sections of configurations; bonds are drawn 
between atoms and their neighbours, these being defined as those closer than r,. The 
structures consist of cross-linked and broken chains. The degree of cross linking 
decreases from Te --+ Se + S ,  the chains thus becoming more obvious. In the case of 
the unconstrained model for sulphur there are a significant number of unbonded 
atoms. However recall that this model is not supposed to represent the real structure, 
merely to reflect the trends within the group. A section of the chain model is also 
shown in Figure 19. The number of unbonded atoms is now small and the chain 
length is clearly greater. We can thus conclude that the basic idea of chain structures 
within this group is probably correct, but for tellurium and to a lesser extent selenium 
the chains are cross-linked and broken. The ring model for sulphur looks quite similar 
to the chain model, though the broken rings are merely a consequence of ‘slicing’ 
through the configuration. However this does illustrate quite clearly that the 
difference between chain and ring models in terms of the actual atomic positions, 
and hence of S(Q),  is very small. The relative merits of chain and ring models for 
sulphur will be discussed elsewhere. 

4.2 Comparison with other simulations 

It is difficult to make comparison with other simulations over the whole series of 
elements studied here. There have been many Monte Carlo or molecular dynamics 
simulations of the simple liquids, using 2-body potentials, and in most cases these 
agree quite well with the experimental data. We have learnt nothing particularly new 
in that respect, except in the sense o f  self-consistency of approach. For the weakly 
covalent liquids, as defined here, there have been very few simulations that agree 
quantitatively with the data. Those of Dzugutov et al. for lead’ and bismuthI3 are 
probably the best in this sense, but they have concentrated on the form of the 
interatomic potentials required and the dynamics, not on local structural correlations. 
Of the rest the series of simulations by Hafner and co-workers is undoubtedly the 
most complete and reliable (see Ref. 14 and references therein). They have con- 
centrated on the approach using pseudopotentials. While their models do not fit the 
data as well as those shown here, there are nevertheless considerable similarities 
between the major features of the 3-body correlations. For instance the bond angle 
distribution for arsenic is very similar15 and their description of the structure of 
tellurium, ‘entangled broken chain’16, describes the structure we obtain perfectly. 
This confirms that, even though RMC does not use an interatomic potential, it does 
not generally produce physically unsensible results. The cases where RMC does not 
work well, that is where there is strong covalent bonding but not rigid molecules 
(such as selenium, sulphur and phosphorus), are also cases where it has so far proved 
impossible to derive suitable potentials”. 
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The recently developed technique of ab initio molecular dynamics'* offers some 
hope for understanding these more complex systems. Here a full quantum mechanical 
treatment is given to the bonding electrons, effectively producing a complete many- 
body potential. While such an approach has considerable possibilities there are still 
some problems to be overcome. Firstly the method is extremely computationally 
expensive so only small models (typically 64 atoms) have been studied. For systems 
with possible long chain structures (e.g. selenium) the boundary effects must be 
considerable. Secondly the choice of pseudopotentials to represent the core electrons 
can influence the results, and this choice is often empirical. Unfortunately the only 
two elemental liquids that have been studied in detail are carbonI9, for which no 
experimental data exist, and silicon'' for which the data are poor. The results of the 
ab initio method have not therefore been quantitively tested, though the structure 
factor for silicon does agree well with the X-ray data'16 within the likely errors. It is 
worth noting that the bond angle distribution derived for silicon is very similar to 
that obtained from RMC modelling for germanium, and the 'fluctuation toward local 
tetrahedral order' so elegantly observed from electron density maps is precisely what 
has been described above. 

5 CONCLUSIONS 

The RMC method has been used to model the structures of a large number of 
elemental liquids. Detailed information, which is not obtainable directly from the 
structure factors or radial distribution functions, has been obtained on structural 
trends through the periodic table. These have been discussed in terms of the 
competition between close packing and covalency. We have made no attempt to 
specify, in terms of the interatomic potential or of electronic states, what is actually 
meant by stronger or weaker covalency; this has already been well discussed by 
Hafner14. We have only attempted to describe the trends in structural terms. Since 
RMC does not use a potential the structures produced cannot be considered to be 
in any kind of thermodynamic equilibrium. On the other hand simulation models 
based on a potential are in equilibrium but do not agree well with the experimental 
data. What is perhaps required is some combination of the two approaches, with 
both a potential and data being used to produce a model; this possibility is being 
investigated. 

It is worth stressing here that all simulation methods have their particular 
advantages and disadvantages in the study of liquids. The RMC method only 
provides information on structure, not on dynamics, and so has restricted applic- 
ability. However we would emphasise that quantitative agreement with experimental 
data is important if detailed conclusions are to be drawn, particularly for some of 
the more subtle effects described here. We would also stress that direct interpretation 
of features in the experimental S(Q)  or g(r) can be misleading; a proper structural 
model, obtained by one of the available techniques, is necessary if liquid structures 
are to be understood4. 

For the future it is clear that, in order to understand the subtle differences between 
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the structures of the many elemental liquids where three-body forces play a significant, 
but minor, role there is a requirement for significantly more accurate experimental 
data than are currently available. Since the differences between these and the ‘simple’ 
liquids are small the systematic errors in the measured structure factors must be 
correspondingly smaller. Further work is also required on the representation of 
many-body correlations. The function b(cos 0) used here is simple but ‘hides’ many 
of the features shown in the more complex g(r ,  cos 0). However even this function 
has only been subject to very qualitative interpretation. A promising extension of 
the use of spherical harmonic invariants is being made by Calvo” but other 
approaches are also needed. 
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